# **DEEP LEARNING**

Lecture 9: Deep Reinforcement Learning

Dr. Yang Lu

Department of Computer Science and Technology

luyang@xmu.edu.cn





# Supervised Learning

- •Given data: (x, y), x is data, y is label.
- •Goal: Learn a function to map  $x \to y$ , namely posterior probability

$$P(Y|X=x)$$

 Examples: Classification, regression, object detection, face recognition, sentiment classification, etc.

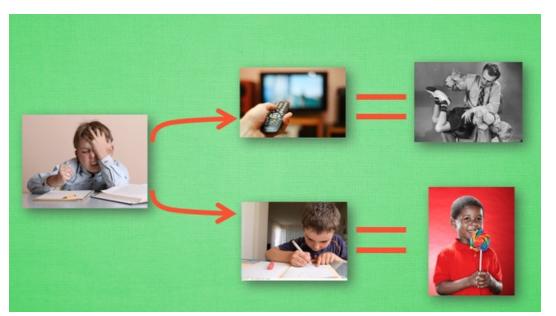


→ cat



→ car

- When we are kids, nobody gives us training data for good behaviors and bad behaviors.
- •We learn by trial and error with feedbacks from parents and teachers.



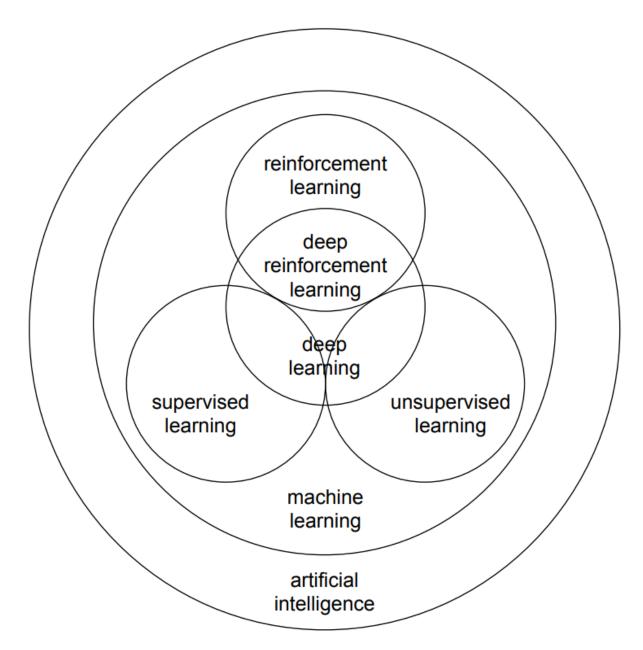
Negative feedback

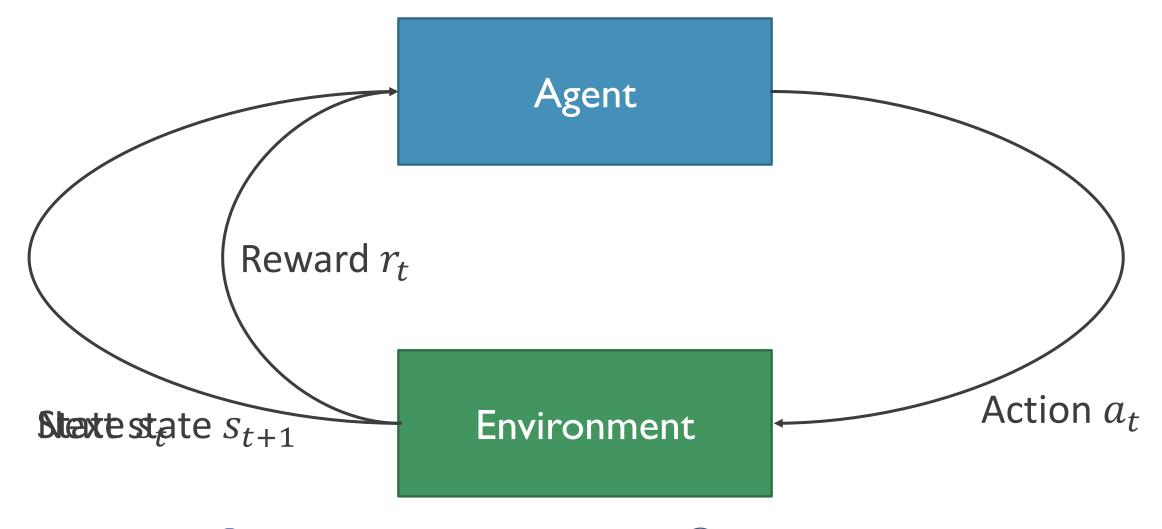
Positive feedback

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal.
- Feedback is delayed, not instantaneous.
- Time really matters (sequential, non i.i.d data).
- Agent's actions affect the subsequent data it receives.



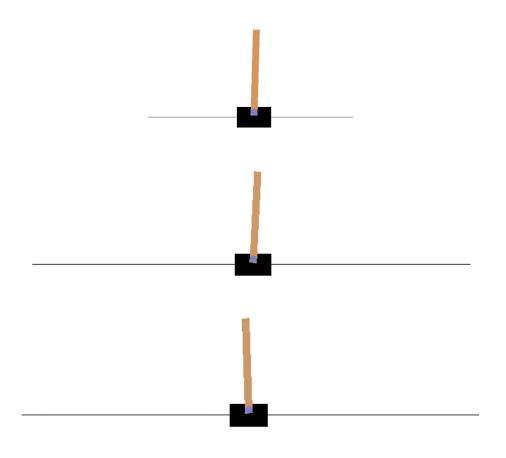






#### Cart-Pole Problem

- Objective: Balance a pole on top of a movable cart.
- State: angle, angular speed, position, horizontal velocity
- •Action: horizontal force applied on the cart.
- Reward: 1 at each time step if the pole is upright.





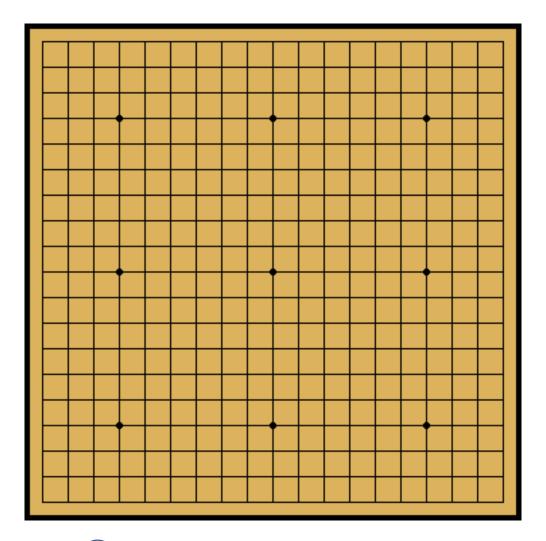
#### **Atari Games**

- **Objective**: Complete the game with the highest score.
- **State:** Raw pixel inputs of the game state.
- Action: Game controls e.g. Left, Right, Up, Down.
- Reward: Score increase / decrease at each time step.



#### Go

- **Objective**: Win the game.
- **State**: Position of all pieces.
- Action: Where to put the next piece down.
- Reward: 1 if win at the end of the game, 0 otherwise.



# Play game







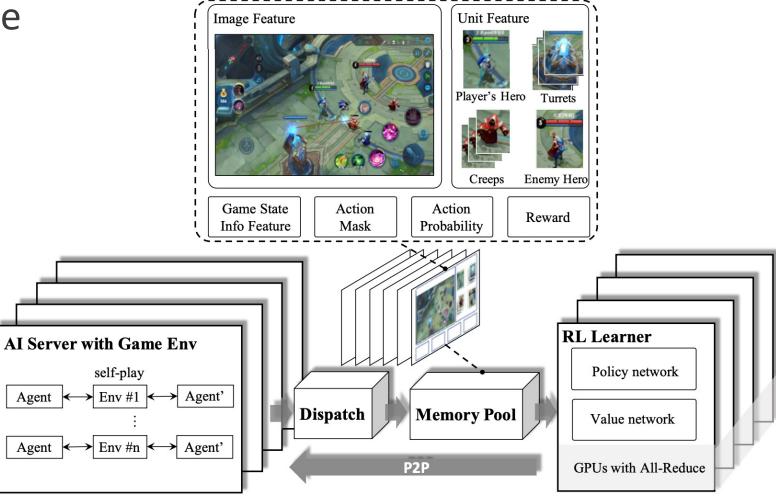








Play game

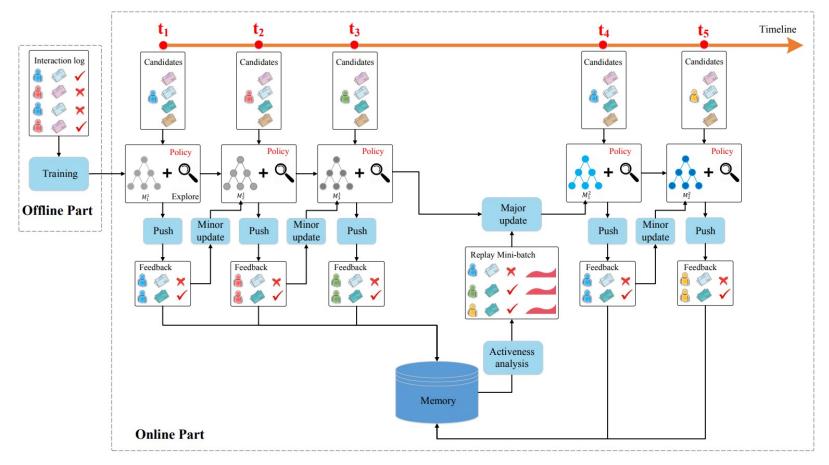




- AlphaGo [DeepMind, Nature 2016]:
  - Required many engineering tricks
  - Bootstrapped from human play
  - Beat 18-time world champion Lee Sedol
- AlphaGo Zero [Nature 2017]:
  - Simplified and elegant version of AlphaGo
  - No longer bootstrapped from human play
  - Beat (at the time) #1 world ranked Ke Jie
- Alpha Zero (Dec. 2017)
  - Generalized to beat world champion programs on chess and shogi as well
- MuZero (Nov. 2019)
  - Plans through a learned model of the game

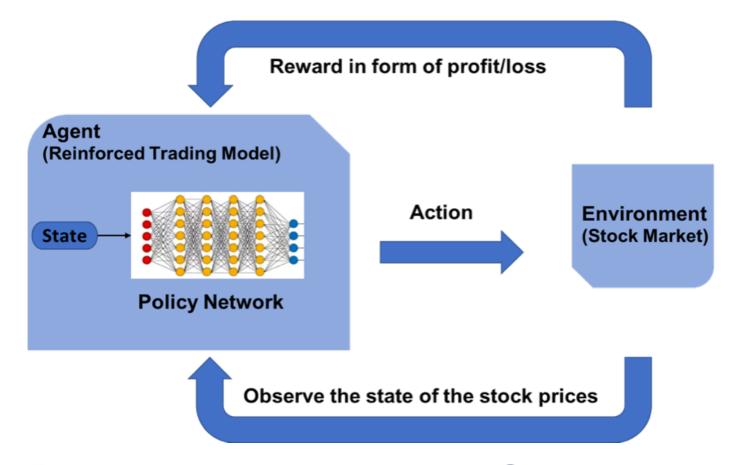


# Recommander system

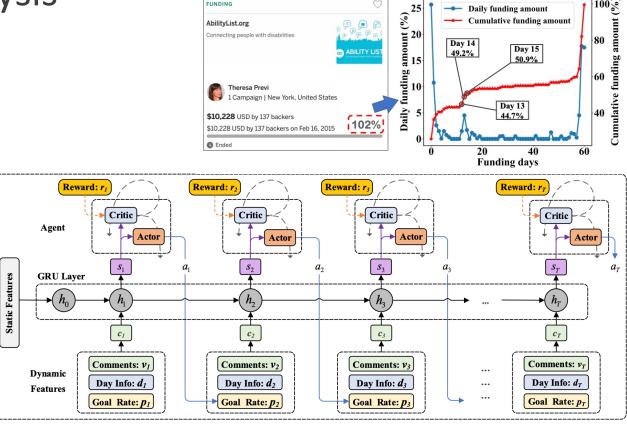




Financial trading



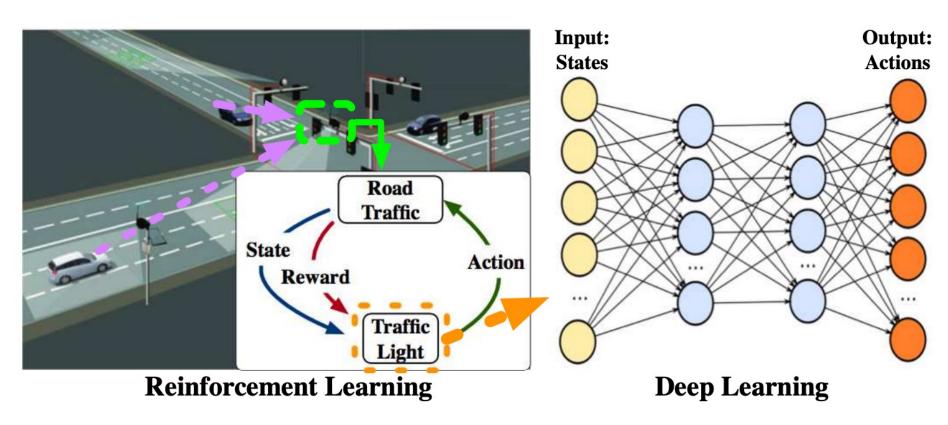
Business analysis



Crowdfunding dynamics tracking

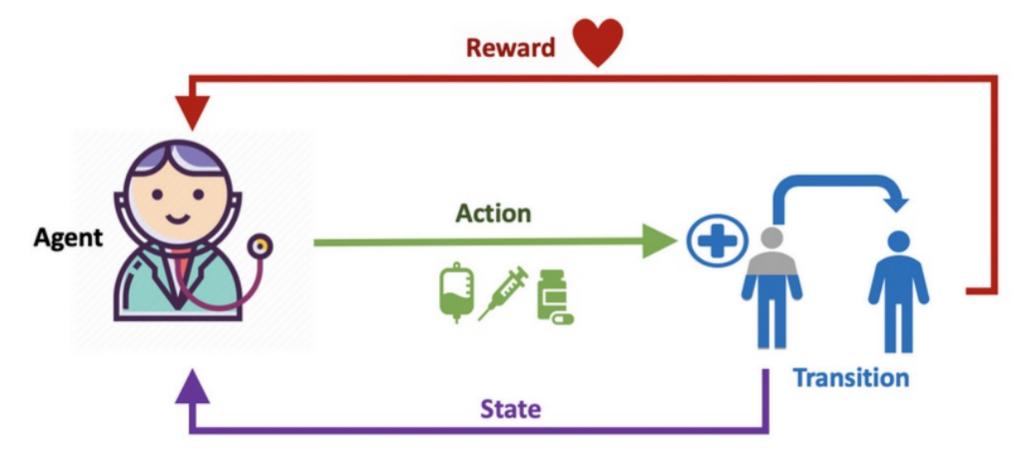


Smart transportation



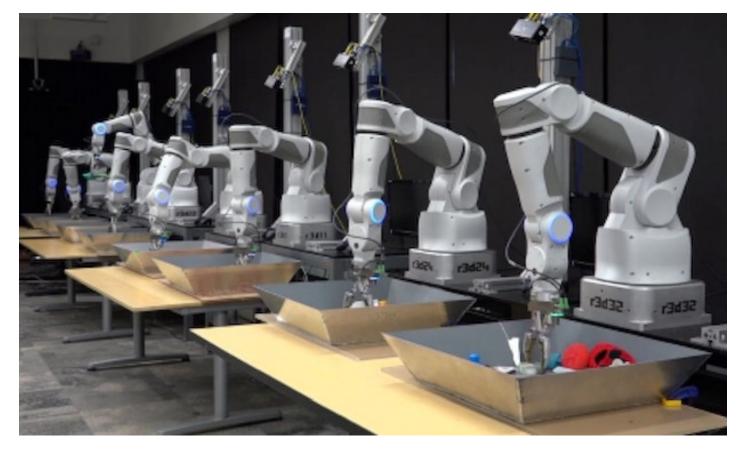
Traffic light control model

#### Healthcare

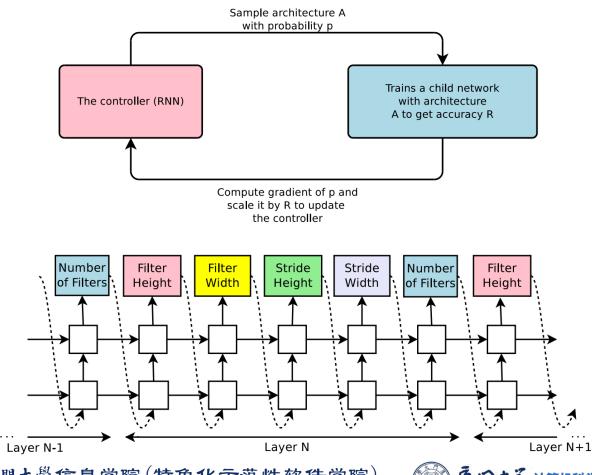




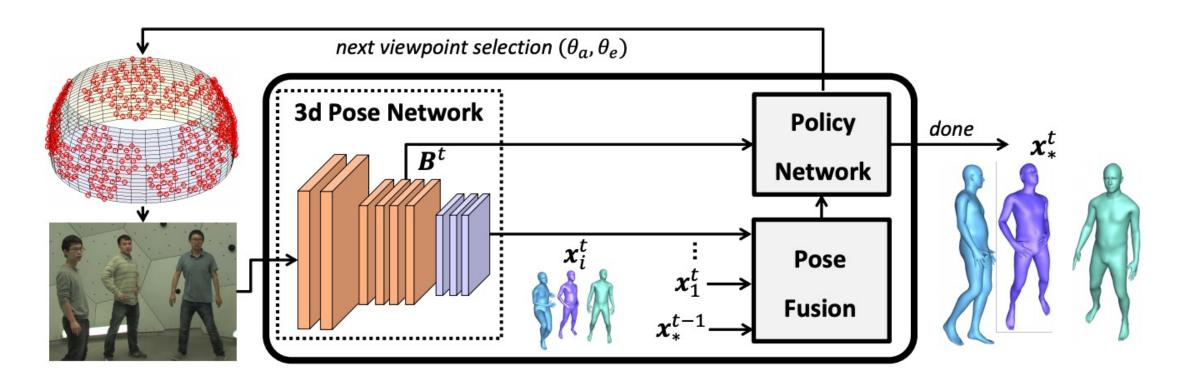
#### Robotics



Network architecture search

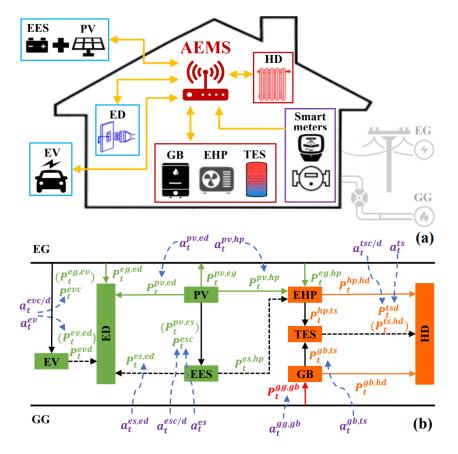


CV



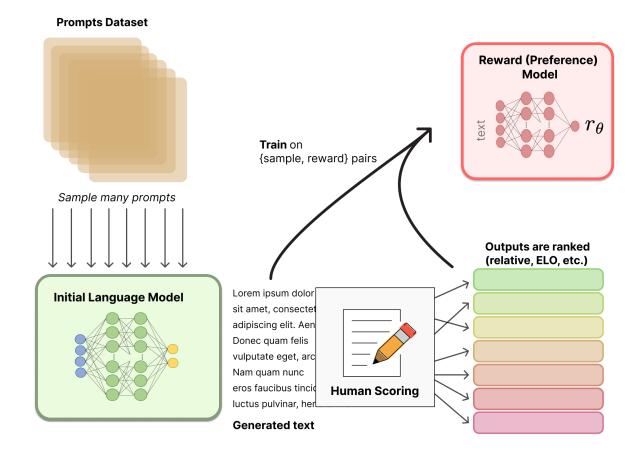
Active human pose estimation

Energy management





ChatGPT (by reinforcement learning from human feedback)





#### Outlines

- Markov Decision Process
- Q-Learning
- Deep Q Network
- Policy Gradient
- Actor-Critic



# MARKOV DECISION PROCESS

#### **Markov Decision Process**

- Mathematical formulation of the RL problem.
- A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov.

#### Definition

A Markov decision process is a tuple  $\langle S, A, P, R, \gamma \rangle$ 

- $\blacksquare$  S is a finite set of states.
- $\blacksquare$   $\mathcal{A}$  is a finite set of actions.
- $\blacksquare \mathcal{P}$  is a state transition probability matrix,

$$\mathcal{P}_{S\to S'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

- $\mathcal{R}$  is a reward function,  $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$ .
- $\gamma$  is a discount factor  $\gamma \in [0,1]$ .



#### **Markov Decision Process**

#### **Definition**

A policy  $\pi$  is a distribution over actions given states,

$$\pi(a|s) = P[A_t = a|S_t = s]$$

- A policy fully defines the behavior of an agent.
- MDP policies depend on the current state (not the history).

Policy is the thing that we should learn in RL. In short, what should I do on the current state.



#### Return

#### Definition

The return  $G_t$  is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}.$$

- The discount  $\gamma \in [0,1]$  is the present value of future rewards.
- This values immediate reward above delayed reward.
  - $\blacksquare \gamma$  close to 0 leads to "myopic" evaluation.
  - $ightharpoonup \gamma$  close to 1 leads to "far-sighted" evaluation.
- Objective: find policy  $\pi^*$  that maximizes the return.



#### Return

Most Markov reward and decision processes are discounted. Why?

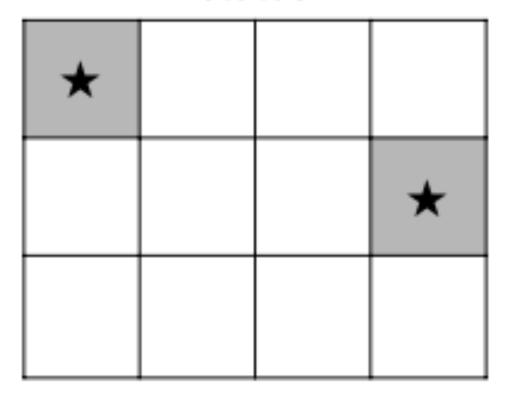
- Mathematically convenient to discount rewards.
- Avoids infinite returns in cyclic Markov processes.
- Uncertainty about the future may not be fully represented.
- If the reward is financial, immediate rewards may earn more interest than delayed rewards.
- Animal/human behavior shows preference for immediate reward.



# A Simple MDP Example

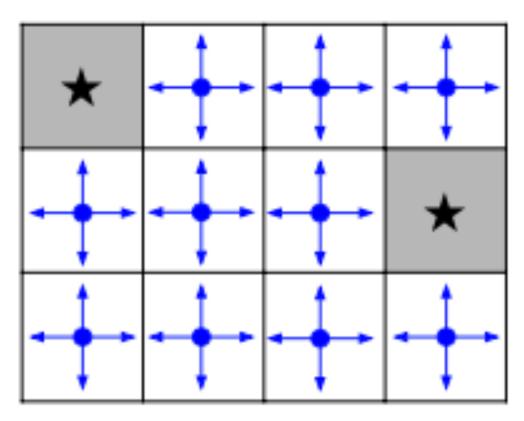
- Actions = {right, left, up, down}.
- Reward is set at -1 for each transition.
- Objective: reach one of terminal states (greyed out) in least number of actions.

#### states

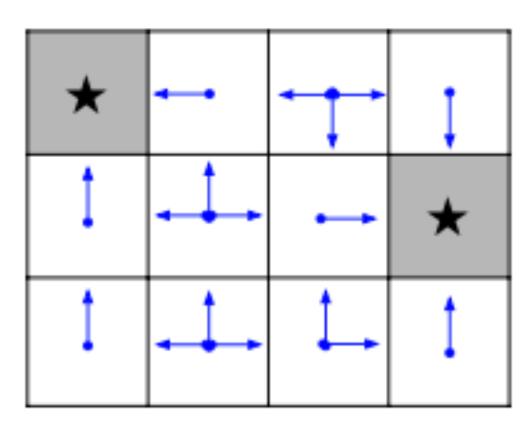




# A Simple MDP Example



Random policy



Optimal policy

# Q-LEARNING

#### Value Function and Q-Value Function

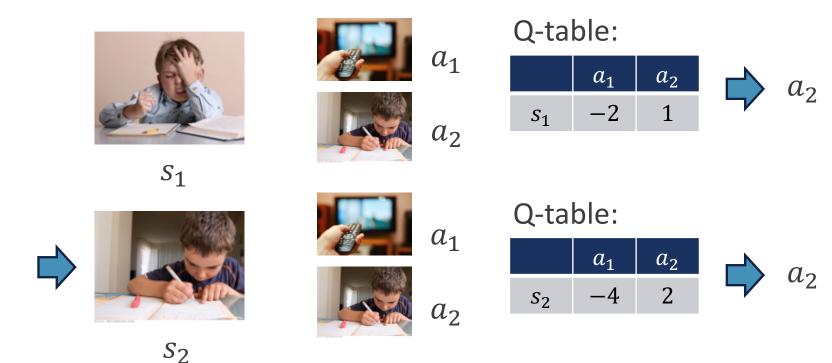
- Assume we know the return  $G_t$  for every state s with every action a. How should we do?
  - On state s, try every action a and choose the one with max return.
- How to estimate the return given a state-action pair?
  - The Q-value function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$





- The Q-values  $Q_{\pi}(s,a)$  can be represented by a table called Q-table.
- It stores the estimated returns (not reward!) obtained by action a under state s.





- Store the expected return for every state and every action.
- When we are in a state, just select the action with maximum Q-value.
- Now, when the Q-table is not accurate (e.g. random initialized), how to update based on a series of actions?

#### Q-table:

|       | $a_1$      | $a_2$ |
|-------|------------|-------|
| $s_1$ | <b>-</b> 2 | 1     |
| $S_2$ | <b>-</b> 4 | 2     |
|       |            |       |





The Q-value function can be decomposed into two parts:

- Immediate reward  $R_{t+1}$ .
- Discounted value of successor state  $\gamma \max_{a} Q_{\pi}(S_{t+1}, a)$ .

$$Q_{\pi}(s, a) = \mathbb{E}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+2} + \cdots | S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+2} + \cdots) | S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_{t} = s, A_{t} = a]$$

$$\leq \mathbb{E}[R_{t+1} + \gamma \max_{a} Q_{\pi}(S_{t+1}, a) | S_{t} = s, A_{t} = a]$$

■ The optimal Q-value function  $Q_{\pi}^*(s,a)$  takes the equality:

$$Q_{\pi}^{*}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a} Q_{\pi}(s_{t+1},a) \mid S_{t} = s, A_{t} = a\right].$$



- We have two observations before and after we take action  $a_t$ .
  - Before: we only know the estimated return from Q-table.
  - After: we receive real reward.
- Therefore, we have an estimated value and a real value before and after we take action  $a_t$ .
  - **E**stimated value:  $Q_{\pi}(s_t, a_t)$ .
  - Real value:  $R_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)$ .



## **Q-Learning**

Just like supervised learning, we correct our model by the difference between prediction and ground truth:

$$Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) + \alpha \cdot (R_{t+1} + \gamma \cdot \max_{a} Q_{\pi}(s_{t+1}, a) - Q_{\pi}(s_t, a_t))$$
 estimation Ir reward discount optimal future estimation real value



## $\varepsilon$ -Greedy

- Now, the only problem left is how to take action from Q-table.
  - Always select the maximum value?
- $\epsilon$ -greedy is a strategy to deal with exploration-exploitation tradeoff.
  - ullet ranges [0,1], indicating the probability to use the local optimal solution.
- For example, when  $\varepsilon = 0.9$ .
  - In 90% situations, we take the action with maximum Q-value.
  - In 10% situations, we take random actions.





### Q-Learning

#### Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size  $\alpha \in (0,1]$ , small  $\varepsilon > 0$ 

Initialize Q(s, a), for all  $s \in S^+$ ,  $a \in A(s)$ , arbitrarily except that  $Q(terminal, \cdot) = 0$ 

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g.,  $\varepsilon$ -greedy)

Take action A, observe R, S'

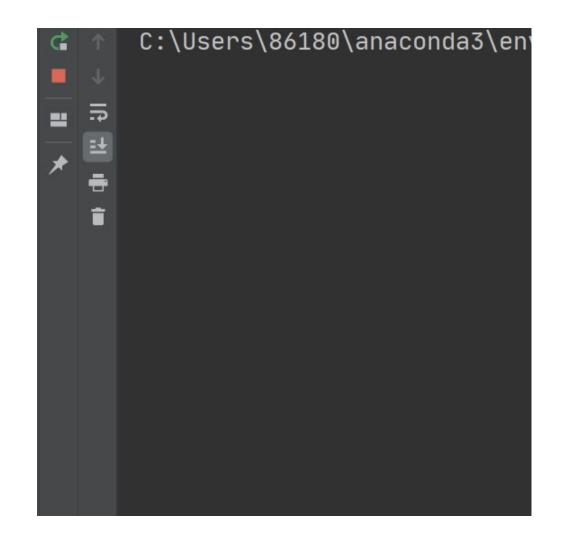
$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

until S is terminal

### Q-Learning Demo

- A simple example for Reinforcement Learning using table lookup Q-learning method.
  - An agent "o" is on the left of a 1 dimensional world, the treasure is on the rightmost location.
  - Run this program and to see how the agent will improve its strategy of finding the treasure.
- Run this demo by yourself in Lecture 10.ipynb





### Problem of Q-Learning

- Not scalable.
  - Must compute  $Q_{\pi}(s, a)$  for every state-action pair.
- If the number of states is extremely huge, it is computationally infeasible to compute for entire state space!
  - E.g. Go board has a 19 × 19 grid of lines. How many states?
- •What we want is not we store the Q-table, we aim to estimate the return from current state s with action a.
  - Given s and a as input, estimate return as output, how to do?



# DEEP Q NETWORK

#### Deep Q Network

#### Playing atari with deep reinforcement learning

V Mnih, K Kavukcuoglu, D Silver, A Graves... - arXiv preprint arXiv ..., 2013 - arxiv.org

We present the first **deep** learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional ...

☆ Save 切 Cite Cited by 13348 Related articles All 42 versions ≫

Deep Q Network (DQN) uses deep neural network to estimate the actionvalue function.

$$Q_{\pi}(s, a; \theta) \approx Q_{\pi}^*(s, a)$$

- ullet  $\theta$  is network parameters.
- Now, the estimated and real Q-value becomes:
  - Estimated value:  $Q_{\pi}(s_t, a_t; \theta)$ .
  - Real value:  $R_{t+1} + \gamma \max_{a} Q(s_{t+1}, a; \theta)$ .
- How to update? Gradient descent:

$$\nabla_{\theta} L_t = \mathbb{E}[R_{t+1} + \gamma \max_{\alpha} Q(s_{t+1}, \alpha; \theta) - Q_{\pi}(s_t, a_t; \theta)]$$





# Deep Q Network

- Now new problems appear.
- Training samples in a time interval are highly correlated.
  - They are not i.i.d!
  - Inefficient learning.
- The current parameters determine the next data sample that the parameters are trained on.
  - Get stuck in a poor local minimum, or diverge catastrophically.



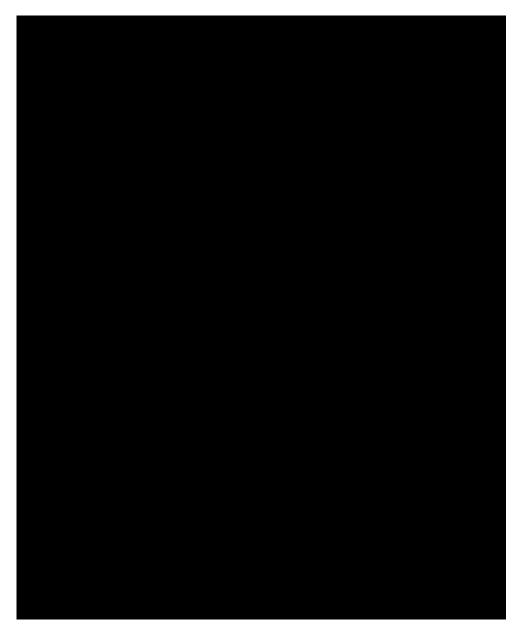
#### **Experience Replay**

Idea: store transitions in memory and random sample some for training at each step.

#### Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
        Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
    end for
end for
```





#### **DQN** Demo

- Reinforcement learning maze example.
  - Red rectangle: explorer.
  - Black rectangles: hells [reward = -1].
  - Yellow bin circle: paradise [reward = +1].
  - All other states: ground [reward = 0].
- Run this demo by yourself in Lecture 10.ipynb





#### Problems with Q-Learning

#### Q-learning steps:

- Estimate return, given state and action, by Q-function.
- Select the action with maximum return by  $\epsilon$ -greedy.

#### Problems:

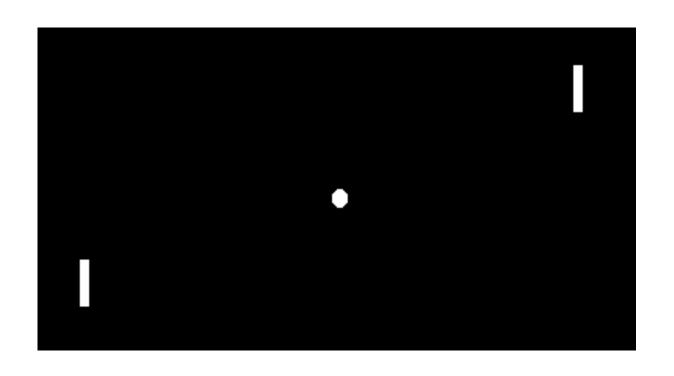
- The Q-function can be very complicated, e.g. in Dota 2, the screenshot is the current state. (how many states there?)
- Can't only deal with continuous actions, e.g. cast hero's spell at some position, or hold a key for some time.
- Instead, can we learn a policy directly, e.g. finding the best policy from a collection of policies?



# **POLICY GRADIENT**

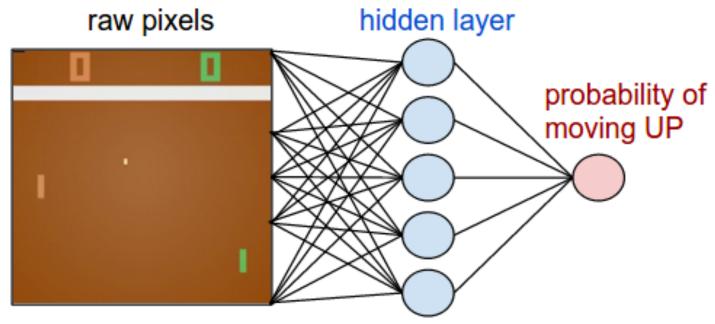
## The Game of Pong

- The game of Pong is an excellent example of a simple RL task using policy gradient.
- Input: a 210x160 image.
  - How many states?
- Output: UP or DOWN.
- Reward:
  - +1 if the ball went past the opponent,
  - -1 reward if we missed the ball,
  - 0 otherwise.
- Our goal is to move the paddle so that we get lots of reward.



### **Policy Network**

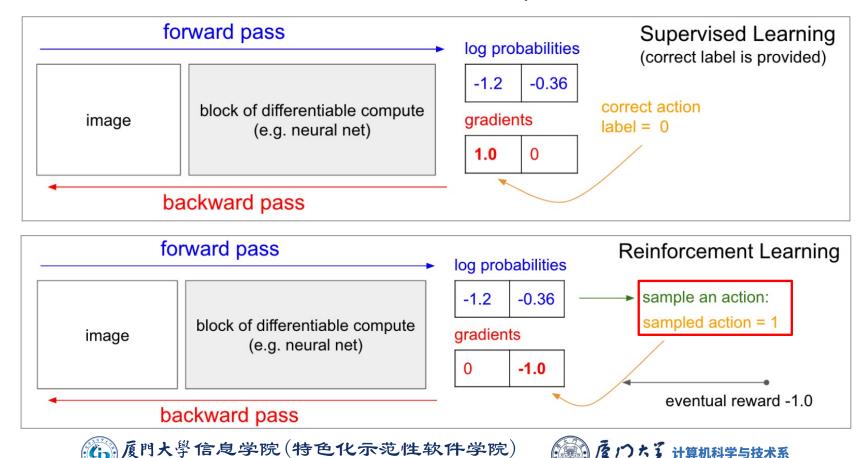
- Define a policy network that implements our player (or "agent").
- This network will take the state of the game and decide what we should do (move UP or DOWN).



A 2-layer fully-connected policy network

# Policy Network vs Supervised Learning

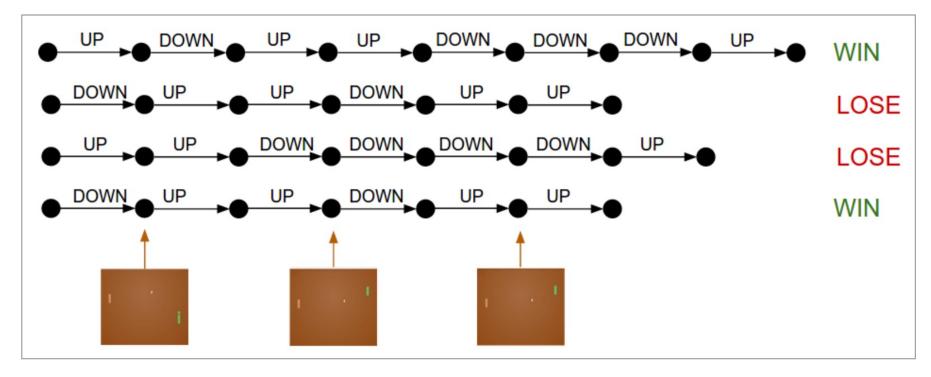
- How to evaluate the action probabilities generated by our model?
  - Suppose at some moment, we choose DOWN, and finally we lose.



51

#### Policy Network

- Use a single final reward as the label for all previous actions, is it ok?
- Average over many iterations, we can eventually increase the probability of good actions and decrease the probability of poor actions.



# **Simple statistical gradient-following** algorithms for connectionist reinforcement learning

RJ Williams - Machine learning, 1992 - Springer

This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE ...

☆ Save ⑰ Cite Cited by 10332 Related articles All 19 versions

Mathematically, we can write:

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)}[r(\tau)]$$
$$p(\tau;\theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$

where  $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, ...)$  is the trajectory.  $r(\tau)$  is the total reward in the trajectory.

Now let's differentiate to calculate the gradients:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$

Can we do this?

Intractable! Gradient of an expectation is problematic when p depends on  $\theta$ .





Use some mathematical tricks help us move gradient into expectation.

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim p(\tau;\theta)}[r(\tau)]$$

$$= \nabla_{\theta} \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

$$= \int_{\tau} r(\tau) \nabla_{\theta} p(\tau;\theta) d\tau$$

$$= \int_{\tau} r(\tau) \frac{\nabla_{\theta} p(\tau;\theta)}{p(\tau;\theta)} p(\tau;\theta) d\tau$$

$$= \int_{\tau} (r(\tau) \nabla_{\theta} \log p(\tau;\theta)) p(\tau;\theta) d\tau$$

$$= \mathbb{E}_{\tau \sim p(\tau;\theta)}[r(\tau) \nabla_{\theta} \log p(\tau;\theta)]$$
Often refer to "likelihood ratio trick"
$$= \int_{\tau} r(\tau) \nabla_{\theta} p(\tau;\theta) p(\tau;\theta) d\tau$$

$$= \int_{\tau} r(\tau) \nabla_{\theta} \log p(\tau;\theta) p(\tau;\theta) d\tau$$

$$= \mathbb{E}_{\tau \sim p(\tau;\theta)}[r(\tau) \nabla_{\theta} \log p(\tau;\theta)]$$



$$\nabla_{\theta} \log p(\tau; \theta)$$

$$= \nabla_{\theta} \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$

$$= \nabla_{\theta} \sum_{t \geq 0} (\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)).$$

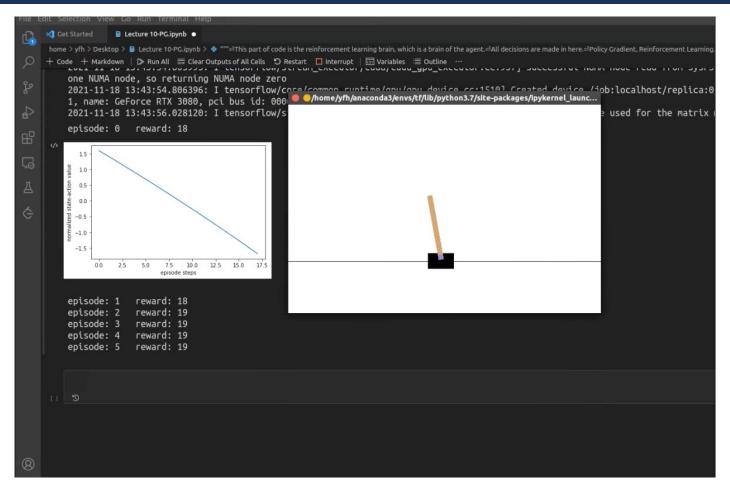
■ There's nothing to do with the first term. Therefore we can estimate the gradient with

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t).$$



# function REINFORCE Initialise $\theta$ arbitrarily **for** each episode $\{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta}$ **do** for t = 1 to T - 1 do $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t$ end for end for return $\theta$ end function

#### PG Demo



Run this demo by yourself in Lecture 10.ipynb



### Problem of Gradient Policy

- What if we can only get a reward after thousands of actions?
- How can we know which action is good or poor?
- We call this the credit assignment problem.
- Although it averages out in expectation, policy gradient still suffers from high variance because credit assignment is really hard.
- Can we help the estimator to reduce variance?

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

 $r(\tau)$  has little relation with the early policy gradient





## **Problem of Gradient Policy**

lacktriangle What we want is to estimate an immediate evaluation to the action  $a_t$ .

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- What does this remind you of?
- Q-value function!
- $lackbox{ } Q_{\pi}(s_t,a_t)$  is designed for estimating how  $a_t$  is on  $s_t$ .

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} Q_{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t).$$



# **ACTOR-CRITIC**

#### Q-Learning vs Policy Gradient

- •Q-learning can't deal with continuous action but policy gradient can.
- Policy gradient usually uses episode-level update, but Q-learning can update at each step.

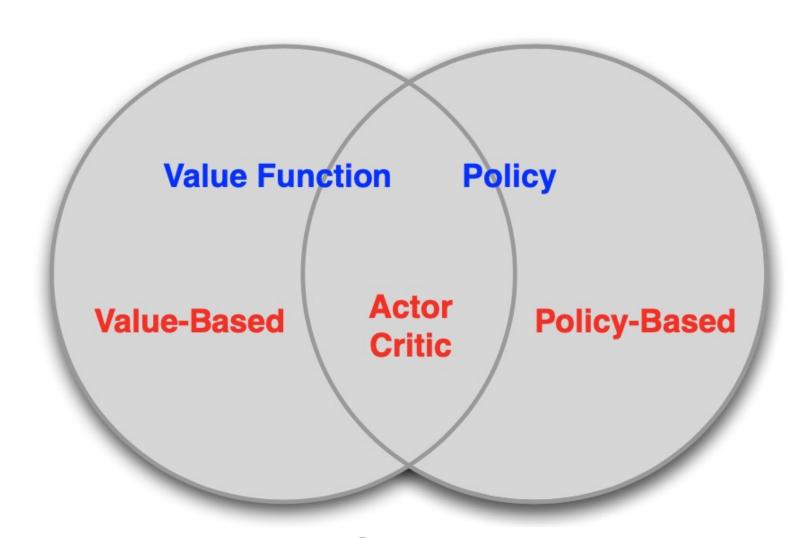
Why not together?





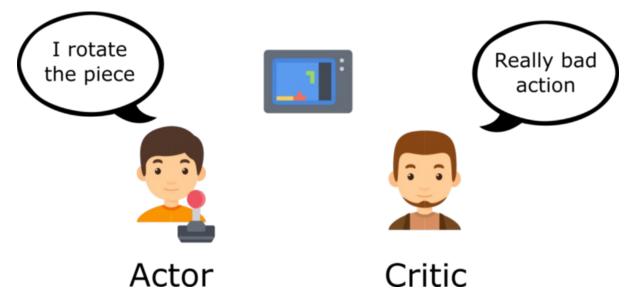
### Value-Based and Policy-Based

- Value Based
  - Learn value function.
  - Implicit policy (e.g. ε-greedy).
- Policy Based
  - No value function.
  - Learn policy.
- Actor-Critic
  - Learn value function.
  - Learn policy.



### Actor-Critic Algorithm

- The actor decides which action to take, and the critic tells the actor how good its action was and how it should adjust.
- Can also incorporate Q-learning tricks, e.g. experience replay.
- Advantage: Single step update, faster than pure PG.
- Disadvantage: Two networks, extremely hard to converge.



學信息学院(特色化示范性软件学院)

### Actor-Critic Algorithm

We can combine policy gradient and Q-learning by training both an actor (the policy) and a critic (the Q-function).

Actor update:

$$\Delta\theta = \alpha Q_{\phi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Critic update:

$$\Delta \phi = \beta \nabla_{\phi} (R_{t+1} + \gamma \max_{a} Q_{\phi}(s_{t+1}, a) - Q_{\phi}(s_{t}, a_{t})])^{2}$$

Problem: How to take max on continuous actions?



#### **DDPG**

#### Continuous control with deep reinforcement learning

TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez... - arXiv preprint arXiv ..., 2015 - arxiv.org
We adapt the ideas underlying the success of Deep Q-Learning to the **continuous** action
domain. We present an actor-critic, model-free algorithm based on the deterministic policy ...

☆ Save 切 Cite Cited by 13953 Related articles All 16 versions ≫

- Deep Deterministic Policy Gradient (DDPG) combines DQN and deterministic policy gradient.
- Before, we have the Q-value function:

$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$$
  
=  $\mathbb{E}[R_{t+1} + \gamma \mathbb{E}[Q_{\pi}(s_{t+1}, a)] | S_t = s, A_t = a]$ 

• When we have a deterministic policy  $\mu: S \to A$ , we can remove expectation and rewrite the formula as:

$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma Q_{\pi}(s_{t+1}, \mu(s_{t+1})) | S_t = s, A_t = a]$$

■ For example, in DQN, we have  $\mu(s) = \operatorname{argmax} Q(s, a)$ :

$$\max_{a} Q_{\pi}(s_{t+1}, a) = Q_{\pi} \left( s_{t+1}, \operatorname{argmax}_{a} Q(s_{t+1}, a) \right).$$





#### DDPG

- $\mu(s_t)$  is deterministic, e.g.  $\mu(s_t) = \max_{a_t} \pi_{\theta}(a_t|s_t)$ .
- Critic update can then be written as:

$$\Delta \phi = \beta \nabla_{\phi} (R_{t+1} + \gamma Q_{\phi}(s_{t+1}, \mu(s_{t+1})) - Q_{\phi}(s_t, a_t)])^2$$
real value estimation

Not real "real value", also an estimated value as the ground truth



## Target Network

- Directly implementing Q-learning with neural networks proved to be unstable in many environments.
- •Since the network  $Q(s, a|\theta^Q)$  being updated is also used in calculating the target value, the Q update is prone to divergence.
  - Again, use prediction as label.



## Target Network

- The solution is to use "soft" target updates, rather than directly copying the weights.
- •Create a copy of the actor and critic networks,  $Q'(s, a|\theta^{Q'})$  and  $\mu'(s|\theta^{\mu'})$  respectively, that are used for calculating the target values, called target networks.
- Then, update them by soft target update:

$$\theta' = \tau\theta + (1 - \tau)\theta', \qquad \tau \ll 1.$$



#### Algorithm 1 DDPG algorithm

Randomly initialize critic network  $Q(s, a|\theta^Q)$  and actor  $\mu(s|\theta^\mu)$  with weights  $\theta^Q$  and  $\theta^\mu$ .

Initialize target network Q' and  $\mu'$  with weights  $\theta^{Q'} \leftarrow \theta^{Q}$ ,  $\theta^{\mu'} \leftarrow \theta^{\mu}$ 

Initialize replay buffer R

for episode = 1, M do

Initialize a random process  $\mathcal{N}$  for action exploration

Receive initial observation state  $s_1$ 

for 
$$t = 1$$
, T do

Select action  $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$  according to the current policy and exploration noise

Execute action  $a_t$  and observe reward  $r_t$  and observe new state  $s_{t+1}$ 

Store transition  $(s_t, a_t, r_t, s_{t+1})$  in R

Sample a random minibatch of N transitions  $(s_i, a_i, r_i, s_{i+1})$  from R

Set 
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss:  $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ 

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

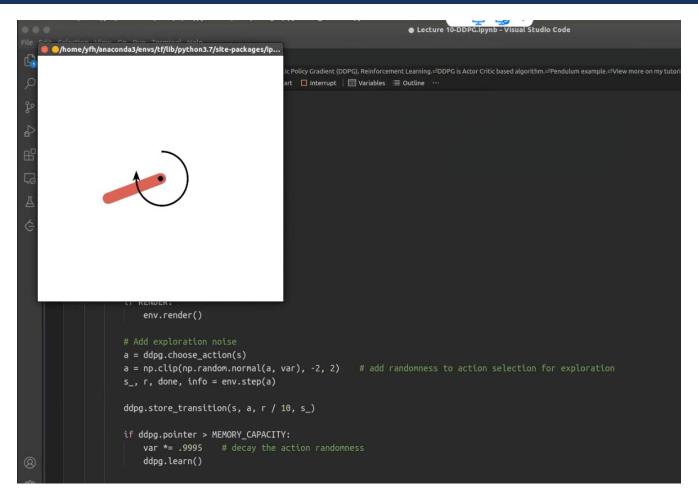
Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$$

end for end for

#### **DDPG Demo**



Run this demo by yourself in Lecture 10.ipynb



#### **Actors in Parallel**



Kage Bunshin no Jutsu in Naruto





#### Asynchronous methods for deep reinforcement learning

V Mnih, AP Badia, M Mirza, A Graves... - International ..., 2016 - proceedings.mlr.press

... DQN was trained on a single Nvidia K40 GPU while the **asynchronous methods** were ... runs were **for** different seeds with fixed hyperparameters. **For asynchronous methods** we average ...

☆ Save ೨೨ Cite Cited by 9860 Related articles All 25 versions ১৯

- •Instead of experience replay, asynchronously execute multiple agents in parallel, on multiple instances of the environment.
- This parallelism also decorrelates the agents' data into a more stationary process.
- •At any given time-step the parallel agents will be experiencing a variety of different states.



#### Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
// Assume thread-specific parameter vectors \theta' and \theta'_{v}
Initialize thread step counter t \leftarrow 1
repeat
                                                                                             Synchronize global parameters
     Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
     Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
     t_{start} = t
     Get state s_t
     repeat
         Perform a_t according to policy \pi(a_t|s_t;\theta')
         Receive reward r_t and new state s_{t+1}
         t \leftarrow t + 1
         T \leftarrow T + 1
    until terminal s_t or t - t_{start} == t_{max}
    R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}
    for i \in \{t - 1, ..., t_{start}\} do
                                                                                               Local parameters don't update
         R \leftarrow r_i + \gamma R
          Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))
         Accumulate gradients wrt \theta_v': d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta_v'))^2 / \partial \theta_v'
     end for
                                                                                                     Asynchronous update
     Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
until T > T_{max}
```

#### **Proximal policy** optimization algorithms

J Schulman, F Wolski, P Dhariwal, A Radford... - arXiv preprint arXiv ..., 2017 - arxiv.org

... It shows how several objectives vary as we interpolate along the **policy** update direction, obtained by **proximal policy** optimization (the algorithm we will introduce shortly) on a ...

☆ Save ® Cite Cited by 14286 Related articles All 9 versions >>>

The most commonly used policy gradient estimator:

$$\hat{\mathbb{E}}_t \Big[ \nabla_\theta \log \pi_\theta(a_t \mid s_t) \hat{A}_t \Big]$$

Relaxation for PPO objective:

$$\underset{\theta}{\operatorname{maximize}} \, \hat{\mathbb{E}}_t \bigg[ \frac{\pi_{\theta}(a_t \,|\, s_t)}{\pi_{\theta_{\text{old}}}(a_t \,|\, s_t)} \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}(\cdot \,|\, s_t), \pi_{\theta}(\cdot \,|\, s_t)] \bigg]$$



#### Training language models to follow instructions with human feedback

L Ouyang, J Wu, X Jiang, D Almeida... - Advances in ..., 2022 - proceedings.neurips.cc

... **InstructGPT**. In human evaluations on our prompt distribution, outputs from the 1.3B parameter **InstructGPT** model ... Moreover, **InstructGPT** models show improvements in truthfulness and ...

☆ Save ☑ Cite Cited by 2748 Related articles All 10 versions ♦

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.



Step 2

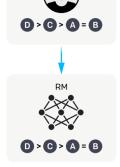
Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.



A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



Step 3

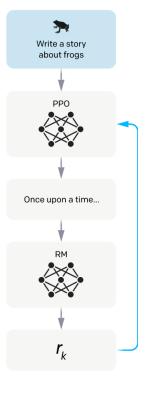
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.





## Reinforcement Learning vs Human

There are several differences or similarities between humans and reinforcement learning to play games:

- RL does not accept any rule input, and guesses the game rule through trial and error completely. From this perspective, RL will be much better than humans.
  - E.g. RL will not be influenced by shuffled pixels.
- Humans have a lot of prior knowledge. However, RL doesn't know anything, it's all by trial and error.
  - E.g. the ball will bounce, the popping angle is the same as the popping angle, the actions correspond to the movement of the racket, and so on.





### Reinforcement Learning vs Human

There are several differences or similarities between humans and reinforcement learning to play games:

- Trial and error is a necessary condition for RL learning, but not a necessary condition for human learning.
  - E.g., humans don't need to experience car crashes hundreds of times in order to learn how to avoid car crashes.
- Prior knowledge determines that humans can quickly abstract the rules of the game (strategic network).
  - E.g., describe the rules of the game in one sentence.





#### Conclusion

# After this lecture, you should know:

- What are states, actions, rewards?
- What is the Q-value function?
- How are deep neural networks incorporated into Q-Learning?
- How does policy gradient work?
- What is actor-critic?



# Suggested Reading

- ■莫烦强化学习
- Deep Reinforcement Learning: Pong from Pixels
- DQN paper
- DDPG paper



#### Reference

- Introduction to Reinforcement Learning with David Silver
- Lecture 17, cs231n, Stanford University



#### Thank you!

- Any question?
- ■Don't hesitate to send email to me for asking questions and discussion. ⓒ

